喷丸硬化处理对高韧性弹簧钢疲劳强度的影响

喷丸硬化处理工艺是一种广泛使用的表面处理方法用于提高疲劳强度和耐磨性能。材料的表面获得一种所谓的"锤击效应",极大的局部变形形成一个加工硬化层,或者说引发压缩残余应力。本文研究了喷丸硬化处理对高韧性弹簧钢疲劳强度的影响。在实验中用常规的喷丸机,采用尺寸均匀的金属丸对优化条件进行了评估。喷丸材料的喷射方法是离心喷射型,直径为1.0mm的喷丸是高碳铸铁,使用的工件是商品弹簧钢JIS-SUP10。初步研究了喷丸时间对表面特性和疲劳强度的影响。在一台平面-弯曲试验机上进行了疲劳实验,对未喷丸处理和经喷丸处理的试样建立了S-N曲线。 主要结果如下:工件的表层经过喷丸处理已充分变形。在所有喷丸过的工件表面附近产生了残余应力。随着喷丸时间的增加,有残余应力的区域向深度方向扩展。最大的压缩残余应力值约为950MPa。在大量周而复始的折弯直至断裂的过程中,喷丸硬化处理能有效地提高疲劳强度。当喷丸速度为60m s-1,喷丸处理90s,得到的疲劳强度约为525MPa。这一喷丸时间几乎相当于全覆盖时间。本次实验发现常规喷丸硬化处理的优化时间为90s。
编辑:冶金材料设备网
发布时间:2015-08-04

热处理工艺对30CrNi2MoVNb钢组织和性能的影响

目前,随着速射系统工况的发展,对高射速、高温高冲击的要求日益提高,材料除具有足够的强度、抗烧蚀性能外,对韧性的要求也越来越高。研究人员以30CrNi2MoVNb钢为例,对材料进行热处理,即:淬火+低温回火(Q&T)、等温淬火+低温回火(A&T)、淬火+碳分配+低温回火(Q&P&T),通过光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、硬度实验、拉伸实验、冲击实验等,研究热处理工艺对试验钢的组织和性能的影响,优化其组织和性能,更好地挖掘其强韧性方面的潜力。试验结果表明: (1)经Q&P&T和Q&T处理后,试验钢的组织均为回火马氏体和残留奥氏体(其中残留奥氏体主要分布于马氏体板条间,呈薄膜状(10~40nm),且回火马氏体板条内析出细小弥散分布的ε-碳化物(100nm左右);经等温(Austempering)处理后,试验钢的组织为马氏体、下贝氏体和残留奥氏体,基体内析出细小弥散的渗碳体;与Q&T工艺和A&T工艺相比,Q&P&T工艺的残留奥氏体量高达8.8%; (2)经Q&P&T处理后,试验钢的屈服强度、抗拉强度和冲击韧性分别为1011.0MPa、1630.6MPa和109.7J/cm2,其冲击韧性比经Q&T处理后提高了19.8%,比经A&T处理后提高了9.7%,而其屈服比由0.82(A&T)下降至0.62;组织中存在的薄膜状残留奥氏体是冲击韧性提高的主要原因; (3)试验钢的冲击韧性随残留奥氏体、下贝氏体的体积分数增加而提高,同时,残留奥氏体对冲击韧性的贡献大于下贝氏体;强度由马氏体强度(回火马氏体强度)、下贝氏体强度、细晶强化等因素共同决定;经Q&T、A&T、Q&P&T工艺处理后,试验钢的断裂方式均为韧性断裂。
编辑:冶金材料设备网
发布时间:2015-08-03

高炉综合喷吹辟新径

高炉喷煤技术自20世纪60年代开始大规模应用于钢铁工业生产,为现代高炉广泛采用,是以煤代焦、降低成本的主要措施,也是调节炉况和改善冶炼过程的重要手段。 鞍钢作为国内最早研究和采用喷煤技术的企业,高炉喷吹工艺已较为成熟,在喷吹煤种选择、煤粉性能、混合配煤、喷吹操作等传统研究方面积累了丰富的经验,同时为实现进一步节能减排、低碳炼铁的发展目标,对一些新的综合喷吹技术思路也积极探索和实践,如喷吹褐煤、喷吹高炉除尘灰、煤粉中添加助燃剂、喷吹焦炉煤气等,并在这些领域进行了大量研究工作。 喷吹褐煤———降本增效的可行手段 通过合理混合配煤,可以扩大喷煤资源,降低成本,并综合各煤种的优点,达到喷煤最佳性能配置。一些煤源广泛、价格合理,而性能指标较差的煤种在采用混合喷煤时也可适当应用,其中价格相对低廉的褐煤逐渐被研究者们关注。褐煤属于煤化程度最低的煤种,含水量高,热值低,易风化和自燃,不利于长途运输和贮存,因此价位较低,多用作化工、动力、民用燃料。鞍钢周边东北和内蒙古地区褐煤资源比较丰富,具备一定的地理优势,而且褐煤普遍硫含量偏低,如果不影响喷煤工艺性能,适当添加褐煤可以有效降低喷煤成本,为此在实验室对添加褐煤的影响进行了基础研究。 试验使用的褐煤取自离鞍钢地理位置最近的某矿区,重点考察了添加褐煤对燃烧性能的影响,因为只有燃烧性能好的煤粉才能在风口有限的空间、时间内充分燃烧,避免或减少未燃煤粉进入料柱,使料柱透气性不易恶化,进而最大限度地提高煤焦置换比、增强以煤代焦效果。燃烧性能使用煤粉静态燃烧法检测,称取粒度为0.2mm以下的空气干燥分析煤样(100±2)mg,均匀平铺在灰皿内,在1200℃恒温条件下置于燃烧炉内燃烧,使用红外气体分析仪在线检测抽取的燃烧尾气CO2成分含量,根据CO2含量变化判断煤粉的燃烧性能差异。 由燃烧性试验可知,随着褐煤配比增加,CO2含量曲线峰值逐渐前移,燃尽时间缩短,燃烧速度明显加快。这是因为褐煤煤化度低、挥发分高、含氧高、化学反应性强、燃烧温度低,所以添加到无烟煤中必然能起到助燃的作用,与烟煤一样能提高喷吹煤粉的燃烧率。同时,褐煤含硫较低,灰熔点较高,可磨性较好,可以满足高炉喷吹用煤的工艺要求。添加褐煤的不利因素是褐煤水分较大、发热量低,尤其是灰分高,使配入量有限。综合利弊,若能找到灰分较低的稳定褐煤资源,可以在配煤中较多使用,因其价格低廉,将起到显著的降本增效作用。 高炉除尘灰综合喷吹———简单高效回收Fe 鞍钢高炉除尘灰主要来源于炉前出铁过程中产生的粉尘与炉顶主皮带料头处放料时产生的粉尘,炉前与炉顶的粉尘量比例大致为7∶3。鞍钢将两种粉尘分别收集、集中排放,通过各自的布袋系统经斗提后收集在同一集粉罐中外排。鞍钢高炉除尘灰中含铁近70%,回收价值极高,此前也采用传统的返回烧结配料方法,但当成分波动较大时往往配料困难,而且由于除尘灰粒度极细(小于0.09mm的比例达70%),理化性质也与精矿等存在较大差异,实际并不利于烧结矿/球团矿强度和其他指标的稳定和提高。鉴于这些问题,同时结合除尘灰的细粉特性,如果能将其添加到高炉喷吹煤粉中,在保证喷煤效果的基础上一起喷入高炉,无疑是最简单、有效的回收方式。 基于这种思路,研究人员对添加除尘灰后的混合煤粉进行了相关试验,评价了混合煤粉灰熔点、发热量和燃烧性能变化。因为除尘灰绝大部分物质都作为灰分引入了煤粉,所以直接导致了混合煤灰分增加,固定碳含量降低。由试验可知,当除尘灰添加到10%时,试样灰分含量增加了9%,挥发分减少了2%,固定碳减少了7%,发热量降低了约5MJ/kg。有利的方面是,混合煤的灰熔点有所升高,并且燃烧性试验表明添加除尘灰后煤粉燃烧性能得到改善。随着除尘灰配比增加,CO2含量曲线到达峰值前越来越陡,燃尽时间明显缩短,分析认为主要原因是除尘灰中铁氧化物的引入量逐渐增多,起到了催化煤粉燃烧的作用。这种效果要大于灰分增加等造成的不利影响。 综上可知,将高炉除尘灰添加到喷吹煤粉中可以改善煤粉燃烧效果,最重要的是能非常简单高效地回收Fe资源,考虑到喷煤灰分一般不超过15%,最好控制除尘灰混入量小于7%。在实验室研究基础上,2009年鞍钢在2号高炉(3200m3)进行了喷吹除尘灰工业试验。试验期间,高炉生产正常,燃料比基本不变,铁水与炉渣成分稳定,高炉产量有所增加,利用系数提高0.035t/m3·d。 喷吹煤粉中添加助燃剂———提高喷煤效率 鞍钢高炉喷煤工艺已较为成熟,在影响喷煤比的一些常规因素如入炉风温、原料条件、设备状况、操作水平等基本保持稳定的前提下,强化煤粉在风口回旋区的燃烧,加快燃烧速率,成为进一步提高煤比、改善高炉冶炼条件的新手段。结合国内外在煤粉助燃剂领域的相关研究,鞍钢于2010年在5号高炉(2580m3)进行了喷煤中加入助燃剂的工业试验,试验使用含锰系氧化物助燃剂(锰氧化物含量15%~20%,其余主要为钙、镁氧化物),添加比例为0.6%,并对高炉主要操作参数和生产技术指标进行了统计分析。 工业试验分为两个阶段:第一阶段为基准期,第二阶段为添加助燃剂的试验期,各为期一个月,基准期和试验期内配煤种类和配比保持稳定。整个试验期间高炉生产较为稳定,未出现大的炉况波动,试验期的生产情况明显好于基准期。试验期煤比波动相对平稳,较基准期有提高趋势,而焦比呈明显降低趋势。据统计,试验期喷煤比增加了8.10kg/t,焦比降低了10.30kg/t(校正后为9.67kg/t)。另外,试验期间高炉日产量增加,平均利用系数增加,综合焦比降低。总体而言,高炉喷吹煤粉中添加助燃剂取得了较好的效果,通过对煤粉燃烧率进行测算,试验期间平均煤粉燃烧率比基准期提高了5%以上,表明助燃剂对改善煤粉燃烧性能起到了重要作用。 高炉喷吹焦炉煤气———改进高炉能源结构 焦炉煤气中含有大量的H2(>50%)及部分CH4等碳氢化合物。高炉喷吹焦炉煤气可以改进高炉的能源结构,为铁矿石的还原过程提供更好的还原剂,有效提高H和C的利用率,降低煤和焦炭的消耗,减少CO2排放。鞍钢鲅鱼圈分公司焦炉煤气过剩,之前用于烧石灰窑、供CCPP(燃气蒸汽联合循环发电机组)发电,剩余部分低价卖给电厂,造成高附加值能源的浪费,经过多次技术论证,确定在两座高炉(4038m3)上实施喷吹焦炉煤气工艺。喷吹工程在2011年底完工,先期进行压缩空气喷吹试验调试系统,从2012年7月首先在1号高炉开始喷吹焦炉煤气试运行。试验初期使用8根喷枪,喷吹量为3000m3/h~3500m3/h,压力0.55MPa~0.60MPa,之后根据运行效果逐渐扩展煤枪数量,加大喷吹量。 2012年6月份该系统没有喷吹焦炉煤气,作为基准期;9月份喷吹焦炉煤气(18根喷枪,喷吹量6000m3/h~6500m3/h,压力为0.55MPa~0.56MPa),作为试验期。结果显示,喷吹焦炉煤气以后,高炉的入炉燃料比明显降低,炉顶煤气中的H2含量略有升高趋势,但变化量不大。经统计,2012年9月份较当年6月份高炉燃料比降低了18kg/t,综合焦比降低了15.79kg/t。须要特别说明的是,与当年6月份相比,2012年9月份高炉原燃料条件有所恶化,焦炭强度下降,入炉品位降低,渣量增大,高炉顺行难度加大,但由于喷吹焦炉煤气,不仅保证了高炉顺行,而且还大幅度降低了入炉燃料比。这些都表明焦炉煤气在高炉内得到了较好的利用,并对改善炉缸工作状况、保持高炉顺行产生了良好的效果。
编辑:冶金材料设备网
发布时间:2015-07-31

转移工艺液体的布置

 【申请号】  CN201420002550.2  【申请日】  2014-01-03  【公开号】  CN204080528U  【公开日】  2015-01-07  【申请人】  苏舍泵有限公司  【地址】  瑞士温特图尔  【共同申请人】    【发明人】  R.维萨拉;V.维克曼  【国际申请】    【国际公布】    【进入国家日期】    【专利代理机构】  中国专利代理(香港)有限公司 72001  【代理人】  李涛;何逵游  【分案原申请号】    【国省代码】  CH  【摘要】  本实用新型涉及转移工艺液体的布置。一种用于从洗浆和增稠装置向后续工艺步骤转移工艺液体的布置,所述布置包括:用于稀释所述工艺液体的机构。所述稀释机构包括用于向与所述工艺液体连通的立管的截面扩散和供给稀释液体的机构,并且所述稀释机构被定位且大小做成使得所述表面液位控制范围中的工艺液体的平均稠度即第三稠度是所述第二稠度的至少1.5倍。所述布置例如可应用于在制浆和造纸工业中从洗浆和增稠装置向后续工艺阶段转移纤维悬浮液或者浆料,从而使得在洗浆和增稠装置之后的浆料的稀释在立管中在表面液位控制范围下方进行。  【主权项】  一种用于从洗浆和增稠装置向后续工艺阶段转移工艺液体的布置,所述布置包括:所述洗浆和增稠装置(10),从所述洗浆和增稠装置(10)以第一稠度释放所述工艺液体;用于稀释所述工艺液体的机构;所述工艺液体被释放至的立管(18);用于测量所述立管(18)中的所述工艺液体的表面液位的机构(24);用于从所述立管(18)释放经过稀释的工艺液体的释放出料开口(20);布置成与所述释放出料开口(20)流体连通用于进一步转移处于第二稠度的工艺液体的泵(22),所述测量机构设置有表面液位控制范围,所述表面液位控制范围具有上表面液位控制极限(26)和下表面液位控制极限(28),其特征在于,稀释机构包括用于向与所述工艺液体连通的立管(18)的截面扩散和供给稀释液体的机构(30、44、54),并且所述稀释机构(30、44、54)被定位且大小做成使得所述表面液位控制范围中的工艺液体的平均稠度即第三稠度是所述第二稠度的至少1.5倍。  【页数】  19  【主分类号】  D21C9/00  【专利分类号】  D21C9/00   
编辑:冶金材料设备网
发布时间:2015-07-30

防止漏钢和铸坯纵裂的初期凝固均匀化技术

提高连铸速度是提高连铸生产效率最有效的手段,为此进行了大量的研究开发工作。在结晶器方面采取的措施有:采用均匀强冷却结晶器薄壁铜板、利用非正弦高频短冲程振动促进保护渣膜的润滑作用、使用熔融性均匀流入性良好的结晶器保护渣、使用多孔浸入式水口控制浸入深度、使用窄面多锥度结晶器提高铸坯质量、利用结晶器热电偶散热监控漏钢预报系统防止漏钢等。在二冷区采取的措施有:大通量散热、二冷辊间距不等化、液面高精度控制、电磁制动抑制钢液流股等。通过这些措施减少了漏钢和铸坯的非正常鼓肚。 结晶器保护渣投入在钢水液面上,被钢水熔化浮在钢水表面。其作用是,降低钢水的热辐射损失和在结晶器振动过程中进入凝固壳与结晶器间隙内,通过润滑作用防止铸坯与结晶器发生热粘结。保护渣在钢水凝固起点弯月面的厚度约为1mm,在弯月面以下形成几百纳米厚的渣膜起绝热层的作用。 在包晶钢连铸时,由于钢水在凝固后立即进行δ-γ相变,体积收缩。在铸坯宽度方向上产生很小的不均匀凝固,凝固壳发生局部变形,形成几十纳米的气隙,导致散热缓慢,使铸坯产生纵向裂纹或发生漏钢。增加保护渣渣膜厚度,降低铸坯冷却速度,可以减轻上述现象。保护渣低黏度化、降低连铸速度、减低振动频率、增大振幅可以增加渣膜厚度,但这会使生产效率下降和增大铸坯振痕深度,并成为最终产品的缺陷。因此保护渣的设计方向应是,使熔融的渣膜发挥缓慢冷却铸坯的作用,即在玻璃质渣膜上生成固相晶体质渣膜,降低铸坯的热辐射。一般是以生成枪晶石相作为固相晶体质渣膜,并对此进行了热力学稳定性和结晶速度的研究。此外,也有以黄长石相做晶体质渣膜的设计。碱度为1.2-1.4时黏度可达5Pa*s的高碱度高黏度的无氟黄长石相,对防止卷渣是有效的,已经应用在圆铸坯连铸中。 Al、Ti、Mn等活性元素含量高的钢种在连铸中,由于夹杂物析出和钢水与结晶器保护渣的反应,生成了钙铝黄长石和钙钛矿等高熔点固相,使润滑不良,导致连铸困难。对这个问题进行了许多研究,开发了高Al电工钢连铸用结晶器保护渣和高Mn钢连铸用结晶器保护渣,使这些难生产的钢种实现了稳定连铸。 为防止由于氢产生的漏钢事故,提出了新型结晶器保护渣设计方案。钢水中H浓度高、连铸速度快,容易发生漏钢事故。因此要对钢水进行真空脱氢处理,并对结晶器保护渣的水分进行严格控制。研究结果表明,大气中的水分溶解在保护渣中,保护渣在结晶器和铸坯急冷层之间的间隙中冷却析出氢气泡,导致散热不良,这是硅脱氧钢漏钢的一个原因。为此,提出了通过控制保护渣中的OH离子溶解度来防止氢气泡析出的保护渣设计方案,采用这种保护渣使硅脱氧钢连铸顺行。根据环境保护的要求,对无氟结晶器保护渣进行了开发。研究了无氟条件下Na、B气化损失机制,由于气泡是以不溶性ZrO2为核心生成的,所以使ZrO2不饱和化是抑制Na、B气化损失的有效方法。
编辑:冶金材料设备网
发布时间:2015-07-30

电炉炼钢预热技术研究进展和未来趋势

能源成本(电力及矿物能源成本)及原料成本不断升高是目前炼钢厂家急需应对的。事实证明,利用化学能及废气显热可以大幅度降低电炉总能耗。另一方面,温室气体对气候变化的不良影响不但引起全世界的关注,同时也受到电炉设计工程公司及电炉炼钢厂家的高度重视。 在全球温室气体总排放量中,绝大部分发生于矿物能源燃料的燃烧,同时约30%碳排放是工业部门排放的。此工业部门既含电炉炼钢,也包括发电。钢铁业的能源消耗极大,因而在气候问题论坛上倍受瞩目。本文主要是介绍各种废钢预热技术,叙述废钢预热在降低基建费用、扩展炼钢灵活性及减少环境影响等方面产生的效果以及电炉钢厂连续装料最新开发成果。 1、各类废钢预热系统 炼钢厂家现在正寻求更好的解决方法使炼钢更为经济、更符合生态要求及具有更大的生产灵活性。为达到这些目标,必须采用维护少而工效高的设备。采用这样设备的宗旨是保持企业商业上的成功及竞争力。电力成本持续升高、大气CO2排放条例以及陆地及水源保护法规趋严—这些无不使炼钢厂家竭力降低能耗及尽量利用生产废物及介质。用废钢预热方法补偿电炉炼钢能源已有30多年的历史,通常的做法是在废钢装炉前在料桶里用电炉高温废气将废钢加热。高温气体的热源来自于电炉或烧嘴排出的废气,而供给电炉的一次能源则用于将入炉废钢加热至废钢熔点。这样就可通过废钢预热装炉节省能源。预热废钢还可避免湿废钢入炉,从而避免炉内发生爆炸。因此,废钢预热还能保证工厂安全及防止设备意外损坏事故。废钢进行预热的突出优点是可以减少电炉炼钢的电力消耗及提高钢厂生产效率。 早期的废钢预热系统采用单独的热源,通常是将废钢装在料桶里加热。据报道,这种预热方式的节能效果最高可达30kWh/t,且由于出钢至出钢时间缩短还能降低电极及耐材消耗。后来,因为开发出电炉第四孔废气系统,有些厂家做了用炉子废气预热废钢的尝试。据报道,此举的一个效果是预热中粉尘会附着在废钢上,因而袋式除尘器的粉尘负荷有所下降。但由于热循环中温度起伏不定,很难控制废钢预热中的废气温度,此外在被预热的废钢内部会形成温度梯度。对温度必须加以控制,以免废钢料桶烧毁和防止料桶内细小废钢燃烧或粘附。 研究者指出康斯迪(Consteel)技术是一种完全不同的做法。此项技术理念的核心是废钢不间断装炉,在连续装炉中完成能效转换及增产。此种炉子设计达到效果的关键在于控制熔池温度、废钢给进速率及废钢成分。此系统的优点之一是用炉子管道内废气对废钢作局部预热,将预热的废钢连续装入炉内,使炼钢人员能在泡沫渣覆盖下全功率起动炉子。这也是电炉能将变压器规格降低10%但是产钢量能与传统大变压器炉子产量相等的原因之一。在整个熔炼过程中电弧始终埋没于泡沫渣中,因而电弧状态极为稳定,很少发生闪变及谐波,噪声也大为减少。 在采用Consteel系统时,废钢温度可达315-450℃,废气进入预热系统热端即可达到这么高的温度,而相邻炉一般仅能节能15-40kWh/t。但随着炉子运行更为高效及出钢至出钢时间进一步缩短,废钢预热变得越来越困难。到后来废钢预热实际是以牺牲炉子产量及提高维护费用为代价。Consteel废钢预热产生的一些效益是:增产10%,降低了电耗,使废钢脱湿及电极吨钢消耗量下降。 此后出现的废钢预热技术是手指式竖电炉及环保型高效电炉(ECOARC),这两种系统的主要优点是能100%预热废钢以及能降低电耗及电极消耗。采用手指式电炉可使能耗降至70kWh/t。而ECOARC炉是连续将废钢装入起预热作用的竖炉中与熔炼室内的熔融金属接触,在熔炼期电炉与竖炉一起后倾。据报道,ECOARC炉电耗指标可达到150kWh/t。 这两种炉都是将竖炉装在电炉炉壳上方,因而厂房需要更高的高度,另一缺点是竖炉及指状结构水冷会带来高达30kWh/t的能量损失。 除上述几种炉型外,还有本文未详细介绍的几种预热系统,它们是: ◆BBSBrusa回转窑式预热系统。 ◆IHI竖炉式预热器。 ◆ESC复合预热装置。 ◆双炉壳式预热系统。 2、EPC预热系统(环保预热连续装炉系统) 在电炉熔炼废钢的炼钢过程中采用废钢预热技术,利用炉子所排废气显热预热废钢至700-800℃可明显降低电力消耗及相应地提高炉子生产率。在这方面,一些公司合作开发了一种环境友好的高效废钢预热技术。 这项挑战结果是开发出环保型预热及连续装炉(EPC)系统,这种EPC系统结合了100%废钢预热及连续供料这两大优点,无需加炉顶或在炉身上开洞,与其他常见炉子弊端不同,EPC系统在炉子上料期间无粉尘排放及热损失。 这种EPC系统具备一系列优点,这些优点包括: ◆粉尘排放最少—在炉子装料当中,系统始终处于气密状态,使车间保持最低污染。 ◆节能—EPC系统与传统电炉相比可减少电力消耗约100kWh/t。 ◆废钢装炉不受条件限制—可在炉子通电情况下不受炉子操作限制,用料桶将废钢装炉,这样就可提升炉子操作效率并减少断电时间,取消炉顶开口可大量减少热损失。 ◆停炉少、维护少、热损失少—无手指式电炉身所需的强制水冷部件,无运输机,无特别水冷部件要求,可避免水冷部件出现意外时的大量检修及过度水冷热损失。 ◆通、断电时间变短,因而生产效率高,与传统电炉相比可提高炉子生产效率25%。 ◆电炉炉顶及炉顶三角区使用寿命长—无需为装炉打开及/关闭炉顶,电弧离炉顶始终较远。炉顶水冷壁板很少被电弧烧损,热冲击少,有助于延长炉顶及其三角区使用寿命。 ◆投资回报高—EPC预热效果好,因而最明显的优点是生产成本低。此外,如上所述,通、断电时间短能保证较高生产效率。此外,在保证一定的废钢质量前提下还可提升收得率。 ◆电弧闪变少—依靠平坦熔池操作以及废钢预热及不间断输入能量。闪变及谐波发生次数下降达50%,同时也使噪声相应下降。 ◆无废钢处理—由于炉身及伸缩式给料机设计完美,EPC系统对废钢无需做特别处理。 这种特别EPC系统在结构设计上考虑炉子的最大操作灵活性,有以下主要特征: ◆在炉内预留多达30%-40%熔融金属条件下进行平坦熔池作业。 ◆用伸缩式给料机及综合性秤重装置控制废钢装炉速率。 ◆用伸缩式给料机优化通电中的废钢连续装炉。 ◆根据熔炼功率及预热温度精调废钢装炉速率。 ◆熔池温度均匀并可准确加以控制。 ◆可准确控制废钢预热温度。 ◆采用气密系统废气量最小。 这种EPC系统环境效益: ◆在封闭系统防护下未分开的仓室里装入废钢(电炉炉顶及EPC系统均属封密闭结构,主除尘始终运转)。 ◆废钢装炉期间烟气排量最少。 ◆作业区卫生整洁及安全无恙。 ◆废气量最少,低于常规的30%。 ◆除尘器处粉尘最少,低于常规的30%。 ◆电弧噪声低(经预热的废钢在泡沫渣保护下在平坦熔池里熔炼)。 ◆直接预热,入炉废钢加热温度极高。 ◆EPC系统符合大多数环境标准。
编辑:冶金材料设备网
发布时间:2015-07-29

到 

 页